Kamis, 08 Januari 2015



1.       Silicon Controlled Rectifier (SCR)
SCR merupakan jenis thyristor yang terkenal dan paling tua, komponen ini tersedia dalam rating arus antara 0,25 hingga ratusan amper, serta rating tegangan hingga 5000 volt. Struktur dan simbol dari SCR dapat digambarkan seperti pada gambar dibawah :.

 


Gambar  struktur dan simbol dari SCR

Sedangkan jika didekati dengan struktur transistor, maka struktur SCR dapat digambarkan seperti pada   gambar dibawah :




Gambar Struktur SCR jika didekati dengan struktur transistor.

Kondisi awal dari SCR adalah dalam kondisi OFF (A dan K tidak tersambung). Salah satu cara untuk meng-ON kan (menyambungkan antara A dan K) adalah dengan memberikan tegangan picu terhadap G (gate). Sekali SCR tersambung maka SCR akan terjaga dalam kondisi ON (dapat dilihat pada struktur transistor Gambar 2). Untuk mematikan sambungan A-K, maka yang perlu dilakukan adalah dengan memberikan tegangan balik pada A-K-nya, atau dengan menghubungkan G ke K. Gambar 3 berikut adalah karakteristik volt-amper SCR dan skema aplikasi dasar dari SCR.


  
Gambar Karakteristik dan skema aplikasi SCR.

2.       Triac
Triac dapat dianggap sebagai dua buah SCR dalam struktur kristal tunggal, dengan demikian maka Triac dapat digunakan untuk melakukan pensaklaran dalam dua arah (arus bolak balik, AC). Simbol dan struktur Triac adalah seperti ditunjukan dalam gamabr dibawah :




Gambar simbol dan struktur Triac.

Karena secara prinsip adalah ekivalen dengan dua buah SCR yang disusun secara paralel dengan salah SCR dibalik maka Triac memiliki sifat-sifat yang mirip dengan SCR. Gambar dibawah adalah gambar karakteristik volt-amper dan skema aplikasi dari Triac.




Gambar Karakteristik dan skema aplikasi Triac.

Jika TRIAC sedang OFF, arus tidak dapat mengalir diantara terminal-terminal utamanya (saklar terbuka). Jika TRIAC sedang ON, maka dengan tahanan yang rendah arus mengalir dari satu terminal ke terminal lainnya dengan arah aliran tergantung dari polaritas tegangan yang digunakan (saklar tetutup).
Arus rata-rata yang dialirkan pada beban dapat bervariasi oleh adanya perubahan harga waktu setiap perioda ketika TRIAC tersebut ON. Jika porsi waktu yang kecil saat kondisi ON, maka arus rata-ratanya akan tinggi.
Kondisi suatu TRIAC  pada setiap perioda tidak dibatasi hingga 180o, dengan pengaturan picu dia dapat menghantarkan hingga 360o penuh.  Tegangan gate untuk pemicu buasanya diberi notasi VGT , dan arus gate pemicu dinotasikan dengan IGT.

Gambar Rangkaian picu TRIAC

Selama setengah perioda negative, muatan negative akan berada pada plat bagian atas kapasitor dan jika tegangan yang berada pada kapasitor telah mencukupi, maka TRIAC akan ON.
Kecepatan pengisian kapasitor diatur oleh hambatan R2, dimana jika R2 bernilai besar, maka pengisisannya akan lambat sehingga terjadi penundaan penyalaan yang panjang dan arus rata-ratanya kecil. Jika R2 bernilai kecil, maka pengisian kapasitor akan cepat dan arus bebannya tinggi. 


Gambar DIAC sebagai pengendali TRIAC

Rangkaian tersebut menggunakan DIAC sebagai pengen dali picu. Prinsip kerjanya, jika tegangan input berada pada setengah periode positif, maka kapasitor akan terisi muatan melebihi beban dan hambatan R. jika tegangan kapasitor mencapai tegangan breakover DIAC, maka kapasitor mulai mengosongkan muatan melalui DIAC ke gerbang (gate) TRIAC.
Pulsa trigger TRIAC akan menghantarkan TRIAC pada setengah perioda tadi dan untuk setengah perioda berikutnya (negative) prinsipnya sama.
Sekali TRIAC dihidupkan, maka dia akan menghantarkan sepanjang arus yang mengalir melaluinya tetap dipertahankan. TRIAC tidak dapat dimatikan oleh arus balik layaknya suatu SCR. TRIAC dapat dimatikan dan kembali pada kondisi menghambat, ketika arus beban AC yang melewatinya berharga nol (0), sebelum setengah perioda lainnya digunakan. Faktor ini akan membatasi frekuensi respon yang dimiliki oleh TRIAC tersebut.
Bagi beban-beban resitif, waktu yang tersedia guna mematikan suatu TRIAC akan lebih panjang dari titik ketika arus bebannya jatuh hingga waktu dimana tegangan balik mencapai nilai yang dapat menghasilkan arus latching yang dibutuhkan.
Sedangkan bagi beban-beban induktif komutasinya akan lebih rumit lagi, dimana jika arus beban jatuh dan TRIAC berhenti menghantar, maka tegangan masih ada pada piranti tersebut. Jika tegangannya muncul terlalu cepat, maka akibat yang dihasilkan oleh persambungan kapasitansi adalah tetap menghantarnya TRIAC tersebut. Untuk itu maka sering digunakan rangkaian pengaman yang dapat mengubah nilai perubahan (Range of Change) tegangan TRIAC.
Adapun pengaturan tegangan bolak-balik dengan menggunakan TRIAC ditunjukkan pada gambar dibawah ini.


Contoh penggunaan TRIAC:
Pemakaian motor arus bolak-balik 1 fasa banyak digunakan dalam kehidupan sehari-hari dibandingkan dengan motor arus searah. Pengontrolan pun sekarang sudah banyak ragamnya dari mulai pengaturan putaran sampai pada proteksinya.

3.       DIAC
Kalau dilihat strukturnya seperti gambar-8a, DIAC bukanlah termasuk keluarga thyristor, namun prisip kerjanya membuat ia digolongkan sebagai thyristor. DIAC dibuat dengan struktur PNP mirip seperti transistor. Lapisan N pada transistor dibuat sangat tipis sehingga elektron dengan mudah dapat menyeberang menembus lapisan ini. Sedangkan pada DIAC, lapisan N di buat cukup tebal sehingga elektron cukup sukar untuk menembusnya. Struktur DIAC yang demikian dapat juga dipandang sebagai dua buah dioda PN dan NP, sehingga dalam beberapa literatur DIAC digolongkan sebagai dioda.


Gambar-8 : Struktur dan simbol DIAC

Sukar dilewati oleh arus dua arah, DIAC memang dimaksudkan untuk tujuan ini. Hanya dengan tegangan breakdown tertentu barulah DIAC dapat menghantarkan arus. Arus yang dihantarkan tentu saja bisa bolak-balik dari anoda menuju katoda dan sebaliknya. Kurva karakteristik DIAC sama seperti TRIAC, tetapi yang hanya perlu diketahui adalah berapa teganganbreakdown-nya. 
Simbol dari DIAC adalah seperti yang ditunjukkan pada gambar-8b. DIAC umumnya dipakai sebagai pemicu TRIAC agar ON pada tegangan input tertentu yang relatif tinggi. Contohnya adalah aplikasi dimmer lampu yang berikut pada gambar-9.


Gambar 9 : Rangkaian Dimmer

Jika diketahui IGT dari TRIAC pada rangkaian di atas 10 mA dan VGT = 0.7 volt. Lalu diketahui juga yang digunakan adalah sebuah DIAC dengan Vbo = 20 V, maka dapat dihitung TRIAC akan ON pada tegangan :
V = IGT(R)+Vbo+VGT = 120.7 V



Gambar-10 : Sinyal keluaran TRIAC

Pada rangkaian dimmer, resistor R biasanya diganti dengan rangkaian seri resistor dan potensiometer. Di sini kapasitor C bersama rangkaian R digunakan untuk menggeser phasa tegangan VAC. Lampu dapat diatur menyala redup dan terang, tergantung pada saat kapan TRIAC di picu.
  
pengaplikasian tyristor seperti Triac biasanya dipakai sebagai sistem pensaklaran pada motor AC yang berdaya besar seperti pada mesin cuci digital dan SCR biasanya dipakasi sebagai pensaklaran pada lampu otomatis (misal sakelar cahaya)


Sumber : modul-modul pembelajaran tetentang thyristor  

Tidak ada komentar:

Posting Komentar